Table II. Characteristic Constant k12 for Binary Systems

		$[T_{c_{11}} - T - (T_{c_{11}} - T_{c_{21}})^{1/2}]$			
System	2	k. × 103	System 1	2	kin X
1	Ethulana	1	,	Banzana	(1)
Aethane	Ethylene	1		Toluene	1
	Propulane	2	-Hentane	n-Octane	Ô
	Propane	2	<i>n</i> -rieptane	Benzene	(1)
	n-Butane	4		Toluene	(1
	Isobutane	4	n-Octane	Benzene	(1)
	n-Pentane	6	n-Octano	Toluene	(1)
	Isopentane	6	Benzene	Toluene	(0)
	n-Hexane	8	Carbon dioxide	Methane	$(5 \pm$
	Cyclohexane	8	Guidon dionido	Ethylene	6
	n-Heptane	10		Ethane	8
	n-Octane	(12)		Propylene	10
	Benzene	(8)		Propane	$11 \pm$
	Toluene	(8)		n-Butane	$16 \pm$
	Naphthalene	14		Isobutane	$(16 \pm$
thylene (or ethane)	Ethane	0	14 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	n-Pentane	$(18 \pm$
	Propylene	0	1	Isopentane	$(18 \pm$
	Propane	0	N A A	Naphthalene	24
	n-Butane	1	Hydrogen sulfide	Methane	5 ±
	Isobutane	1	,	Ethylene	$(5 \pm$
	n-Pentane	2		Ethane	6
	Isopentane	2		Propylene	(7
	n-Hexane	. 3		Propane	8
	Cyclohexane	3		n-Butane	(9
	n-Heptane	4		Isobutane	(9
	n-Octane	(5)		<i>n</i> -Pentane	$11 \pm$
	Benzene	3		Isopentane	(11 ±
	Toluene	(3)		Carbon di-	2
. ě	Naphthalene	8		oxide	8
ropylene (or propane)	Propane	0	Acetylene	Methane	(5
	n-Butane	0		Ethylene	6
	Isobutane	0		Ethane	8
	n-Pentane	1	· · · · · · · · · · · · · · · · · · ·	Propylene	7
	Isopentane	0		Propane	9
	n-Hexane	(1)		n-Butane	(10
	Cyclohexane	(1)	8	Isobutane	(10
	n-Heptane	(2)	19 N 19 19 19 19 19 19 19 19 19 19 19 19 19	n-Pentane	(11
	n-Octane	(3)		Isopentane	(11
· · · · · · · · · · · · · · · · · · ·	Benzene	2	Nitrogen	Methane	3
	Toluene	(2)		Ethylene	4
Butane (or isobutane)	Isobutane	0		Ethane	. 5
	n-Pentane	• 0	1 1 1 1 1 3 miles	Propylene	(7
	Isopentane	0		Propane	(9
	n-Hexane	0		n-Butane	12
	Cyclohexane	0	1	Helium	16
	n-Heptane	0	Argon	Methane	2
	n-Octane	(1)		Ethylene	3
	Benzene	(1)		Ethane	3
	Toluene	(1)		Oxygen	1
Pentane (or isopentane)	Isopentane	0		Nitrogen	0
	n-Hexane	0		Helium	5 ±
	Cyclohexane	0	Tetrafluoromethane	Methane	7
	n-Heptane	0		Nitrogen	2
	n-Octane	0	** 1	Helium	$(16 \pm$
	Benzene	(1)	Hydrogen	Methane	3
** / 1.1	Toluene	(1)	Neon	Methane	28
-nexane (or cyclohexane)	n-Heptane	0	77	Krypton	$20 \pm$
	n-Octane	0	Krypton	Methane	1

$$v_{eij}^{1/3} = \frac{1}{2} \left(v_{ei}^{1/3} + v_{ej}^{1/3} \right)$$
(14)

$$z_{cij} = 0.291 - 0.08 \left(\frac{\omega_i + \omega_j}{2}\right) \tag{15}$$

$$T_{eij} = \sqrt{T_{eij}T_{eij}}(1-k_{ij}) \tag{16}$$

The binary constant k_{ij} represents the deviation from the geometric mean for T_{eij} . It is a constant characteristic of the *i*-*j* interaction; to a good approximation, k_{ij} is independent of the temperature, density, and composition. In general, k_{ij} must be obtained from some experimental information about the binary interaction. Good sources of this informa-

tion are provided by second virial cross coefficients (Prausnitz, and Gunn, 1958) or by saturated liquid volumes of binary systems (Chueh and Prausnitz, 1967b), Table II presents our best estimates of k_{ij} for 115 binary systems. As new experimental data become available, this table should be revised and enlarged.

The proposed mixing rule for a_{ij} differs from Redlich's original mixing rule in two respects: (1) introduction of a binary constant k_{ij} , and (2) combination of critical volumes and compressibility factors to obtain aii according to Equations 12 through 15. As a result of (2), the proposed mixing rule does not reduce to Redlich's original rule even when $k_{ij} = 0$, except when v_{ej}/v_{ej} is close to unity; in general,